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A NOTE ON THE STRAIN ENERGY OF ELASTIC SHELLS
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Abstract-The errors inherent in Love's uncoupled strain energy expression are estimated on the basis of general
considerations regarding physical dimensions and properties of invariance, especially with respect to inversion
of the normal to the middle surface.

INTRODUCTION

THERE seem to be two fundamentally different approaches to shell theory, both of which
originated historically in the special case of elastic plates. The first was due to Poisson and
Cauchy and is essentially the three-dimensional theory ofelasticity adapted to the geometri­
cal shape of shells. This theory can-at least in principle-yield exact solutions in the sense
of three-dimensional elasticity. The second, and the one that is of interest to us here, was
originally due to Kirchhoff.t It has proved to be a fruitful theory and is widely used in
mechanics and engineering today. The basic concept on which Kirchhoff's theory is
founded seems to be contained in the following assumption:

The kinematics ofthe middle surface ofa shell determine the state ofthe three-dimensional
body as a whole with sufficient accuracy.
Any theory based axiomatically on this assumption is really a two-dimensional theory

analogous to the one-dimensional beam theory first conceived by Euler.
The object of this paper is to analyse the strain energy expression for a shell made of an

isotropic and homogeneous material, obeying Hooke's law under the basic assumption
stated above. Using dimensional analysis and properties of invariance, it is found that
Love's strain energy expression has inherent errors of, at most, the relative order h/R or
(h/L)2, depending on which is criticaLt This estimate agrees with the results of Novozhilov
[2J, Novozhilov and Finkel'shtein [3J and Koiter [4J but has wider implications since no
further assumptions (like the Kirchhoff assumption regarding points on a normal to the
middle surface or plane stress) are involved. The importance of normal inversion for
investigating invariance of the strain energy expression was apparently first observed by
Serbin [5J, who assumes, however, that the strain energy expression is independent of the
initial curvature of the shell.

No estimate of errors introduced through the basic assumption itself is attempted. In
fact, no such estimate is generally possible without restricting the class of permissible load
distributions. This follows from the fact that there exist essentially different solutions to the
exact three-dimensional differential equations of elasticity exhibiting identical deformation
patterns in the middle surface. On the other hand, there is no intention here to restrict the

t For an account of the development of the theory of elastic plates and shells, see Todhunter and Pearson [I].
tHere h is the thickness of the shell, R the numerical value of the smallest principal radius of curvature and L

a characteristic wave length of the deformation pattern of the middle surface.
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class of permissible load distributions or, which amounts to the same thing, to relate the
error to parameters characterizing the load distribution. The immediate physical significance
of the basic assumption that guides LIS in selecting cases in which a shell theory based on 11

may be applied with success, may justify an effort to estimate the magnitude of errors intro­
duced through further assumptions.

THE STRAIN ENERGY DENSITY

The deformation of the middle surface is uniquely determined by the tangent and
normal displacements va and was functions ofthe coordinates ua of this surface. The intrinsic
deformation is given by the increments of the first and second fundamental tensors l1 afJ
and dafJ , viz.

EafJ = !(Va,fl + Vii,,) - dallH'

Kal! = w. afJ +daFli + dIJYv:~ + vidya.li -dfJyd~\v

where Eap is the strain tensor and K,p the bending tensor. Comma denotes covariant
derivation.

The second fundamental tensor dap and the normal displacement ware defined in
relation to the arbitrarily chosen positive direction of the normal vector to the middle
surface. Thus, if the normal direction is reversed, dap and hence also K aP change signs
(but Gap and E ap do not). This fact will be explored below. The significance is, of course,
that the way in which true invariants (like the strain energy) may depend on dap and K alJ
is somehow restricted.

For a material obeying Hooke's law, the strain energy is necessarily a quadratic function
of the measures of internal deformation.

The expression for the strain energy density W can be written in the following dimen­
sionless form

(1 )

where E is Young's modulus, h the (constant) thickness of the shell and the fourth order
contravariant tensors Capyb, DaPyb and FaPyb are functions of the geometry of the shell
(GaP' dap and h) and of Poisson's ratio 1'. The last term r is a quadratic function of the
(covariant) derivatives of Eap and K ap of all orders.

The purpose of this paper is to examine the strain energy expression (1) and to evaluate
the errors introduced in simplifying it. Special interest is attached to the errors involved
in using Love's strain energy expression

1 h2

W/Eh = -----{(l-v)E EafJ+ vE"EP1.+---···--J(I-v)K K'IJ+ vK'KtJp}2(1-v2) ,p a Pi 24(1-1'2) I ap a

instead of the complete quadratic form (1).
Our examination will be based upon the following:
1. The strain energy is a positive definite function.
2. The strain energy is invariant with respect to inversion of the normal to the middle

surface.
3. The strain energy is an analytical function of the invariants (H, K, h, 1'). regular at

h = 0, H = °and K = 0, where Hand K are the mean and Gaussian curvatures
of the middle surface, respectively.
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ANALYSIS OF INVARIANCE AND PHYSICAL DIMENSIONS
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The invariance of (1) with respect to coordinate transformations must be valid for any
given state of deformation. However, this can only be so if each term on the right hand side
of (1) is invariant. We may thus proceed to examine the terms one by one.

The properties of symmetry of E~pEy~ imply that only the corresponding symmetrical
part of c~py~ contributes to the inner product. Taking advantage of this fact we can­
without loss of generality----express the fourth order tensor c~py~ in the following form

c~py~ = C
I
a~fJaY~ + C2a~YaP~ + C3ha~PdY~ + C4ha~YdP~ + Csh2d~PdY~ + C6h2d~YdP~ (2)

where the coefficients CI' ... , C6 are dimensionless analytic functions of the dimensionless
variables v, Hh and Kh2. There is apparently another possibility of getting dimensionless
coefficients, which is essentially different, namely by using the reciprocal values of the
invariants of curvature 11H and 11K. However, as the product is regular at H = K = 0
we can only achieve regularity for the coefficients and their multiplying factors by using
hand h2as indicated. This is seen from the fact that (a" d" E .. E . .)/H and (d" d" E .. E ..)IH2

are not regular at H = 0 when K # 0 and similarly, that (d" d" E .. E ..)1K is not regular
at K = 0 when H # O. Note that inner products of d~p for instance d~d~dqp, can be reduced
to first order tensors using the Hamilton-Cayley theorem for the second order tensor d~p:

d~dP = 2Hd~-Ka~p y y y

so that no inner products appear explicitly in (2).
When the direction of the normal vector is reversed, d~P changes sign and C3 and C4

must therefore also change signs, while their absolute values remain unchanged. The
coefficients CI ,C2 ,CS and C6 do not undergo any change. Clearly, this restricts the
dependence of the Cs on the variable Hh and implies that

and similarly for C2' Csand C6 , whereas

and similarly for C4 .

It is now seen that the first term C~PY~E~pEy~ of the strain energy expression may be
considerably simplified if terms of relative order (hIR)2 are omitted. As the functions
CI' ... ,C6 are regular at (Hh)2 = Kh2 = 0 we are justified in evaluating them at
(Hh)2 = Kh 2 = 0 within this approximation. In the following we shall denote the coeffi­
cients CI , ... ,C6 , evaluated at (Hh)2 = Kh2 = 0 by CIO , ... ,C60 .

It will next be shown that the contribution from all terms except the first two terms of
(2) are, at most, of the relative order (hIR)2.

Let us multiply (2) through by E~pEy~. The first two terms yield

(3)

where e1 and e2 are the principal strains (Iell ~ le2 1), and where CIO and C20 have positive
values due to the fact that the strain energy expression is positive definite even when
H = K = 0 [i.e. when (3) is the complete form].
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The contribution from the remaining terms, one by one, will be compared with the
sum (3). As

we have

and, furthermore, as

. aYdPbE' E I 4 2 iRla .Ii yb :s:; eII

and

we get the estimates

and

This shows that the relative error in omitting all terms except (3) is, at most, of the
order (h/R)l.

So far, we have made no provision for including higher order tensors than the second
order fundamental tensors aap and d ap on the right hand side of equation (2). Obviously,
such tensors (representing the "waviness" of the undeformed middle surface) may in
general be obtained by covariant derivation of aap. As the tensor C·Pyb is of even order,
the order of covariant derivatives in anyone term must add up to an even number. Hence,
the lowest order terms contain either a second derivative (d .. , ..) or the product of two
first derivatives (d .. ,.d .. ,.). In either case, a factor h4 appears when the coefficient is
dimensionless. It will be seen that the relative order of magnitude of these lowest order
terms is (h/R)1(h/L)2, where L is a characteristic wave length of the wave pattern for the
undeformed middle surface. However, as this wave length is of the order R, we have the
estimate (h/R)4 for the contribution of terms omitted in (2),

This concludes our analysis of the term CapybEapEYb of the strain energy expression (1).
Let us now turn to the third term FaPybKapKyb' As the sign of KapKYb is invariant with

respect to normal inversion, this term can be treated in almost exactly the same manner
as the first one. It is then easily checked that the contribution to the strain energy from the
third term is given by the expression

(4)

the terms omitted being at most of the relative order of (h/R)2. Here k1 and k1 are the prin­
cipal changes of curvature (Ikd ~ Ik11). The expression (4) is seen to be quite analogous to
(3), however the factor h1 appears here, compensating the physical dimensions of k1 and k 2 ·

Like C10 and Czo , the coefficients FlO and Fzo are dimensionless functions of v.
The mixed term D"PYbE"pKyb has to be examined in more detail, since it is essentially

different from the first term caPYbEapEYb and the third term FapY~KapKYb in that the sign of
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the mixed factor EapKyo ' and hence also the sign of DaPylJ, changes with the direction of the
normal vector to the middle surface.

It will be seen that the tensor DaPyo can be written in the following form

DaPyo = DlOHhZaaPaYO+ DzoHhZaaYaPO+ D30h2aafJdYo+ D40h2ayodap + DsohZaaYdPo

where the terms omitted represent contributions to the strain energy of at most the relative
order (hIRf. Multiplying through by EapKyo we get the sum

D10Hh2(e l +eZ)(k l +kz)+DzoHhzEpK~+D30h2(el +ez)dpK~

+ D40h2(k 1+kz)dpE~ +Dsoh2dpE~K~

and we proceed to compare the terms of this sum one by one with the sum of (3) and (4).
For this purpose we shall use the elementary inequality

Ibl
12bxyl s J(ac)(ax

z+cyz)

which is valid for all b, x and y.
For the first term we get the estimate

a> 0, c > 0

which shows that it is, at most, of the relative order IHhi.
For the second term DzoHhzEpK~ we have the inequality

and thus

Similarly. as

and

we get the estimates

ID 30h
2
(el + ez)dpK~1 s J(~:~20) {C 1O(e1+ez)Z +hZFzoki}(h/R)

ID40h
Z
(k 1+kz)dpE~1 s J(~:~lO) {Czoei+hzF10(kl +kz)Z} (hIR)

and
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We may now conclude that the term D2fiY(lE,pKyo is, at most, of the relative order hiR
Finally, let us examine the last term r on the right hand side of the strain energy expres­

sion (1). This term represents a quadratic function of the covariant derivatives of £'Ii and
K,f! of all orders. There are a great number of possibilities for constructing quadratic
invariants from the fundamental tensors a,fl, d'P and the covariant derivatives of Ea/! and
K",/I of given orders. However, it is easily seen that the two lowest order quadratic terms of
the covariant derivatives of E"'fl contain only products of the types (E .. ,. £ ....Jand (E .. E... .i.
since the resulting tensor has to be of even order.

Corresponding sixth order tensor coefficients multiplying these quadratic functions
have the physical dimension (length)2 and will thus contain the factor h2 From this it
follows that the relative order of magnitude of these terms is on an average (h; L}2 in com­
parison with the term C"'f!)'OEapEro ' where L is a characteristic wave length of the deforma­
tion pattern on the middle surface.+ Terms containing higher order derivatives of
are of order (hiL)4 or less.

The remaining terms of r contain derivatives of K",p and are compared with either
D",f!/o£.pK./o or pProK./iK).o, depending on whether the strain tensor E'/i (or its derivatives)
is involved. It is immediately clear that, on an average r is. at most, of the relative order
(h IL)2 Thus, we find that

W/£h = ClO(e l +e2)2+C2okf+dH-h2{Flo(kl +k2 )2+F2o(kf+kfl;.

CONCLUSION

Under the basic assumption that the kinematics of the middle surface determine the
state of the shell with sufficient accuracy, we have found that the uncoupled strain energy
expression (5) has inherent relative errors of, at most, the orders hlR and (h/L)2

The strain energy expression is a link between the two main sections (dealing with the
kinematics and the statics, respectively) of a consistent two-dimensional theory of elastic
shells, which are otherwise unconnected. For such a two-dimensional study, the result
obtained has important implications. We can now derive a complete and consistent two­
dimensional theory of elastic shells without introducing further assumptions and still
retain uncoupled relations between the strain--bending measures and the lorce--eouple
measures.

The strain energy expression (5) contains four dimensionless coefficients C I o· C20 . F1 (I

and FlO' which cannot be determined from further considerations restricted to two dimen­
sions. These coefficients may be determined by studying four selected special cases for
which exact solutions of the three-dimensional equations of elasticity are available. The
general form of the expression (5) may be used for treating sandwich shells. but assuming
homogeneity in the normal direction, the coefficients of Love's strain energy expression
are readily obtained.
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A6cTpaKT-OI.\eHltBaIOTClI HeTO'lHOCTH, BCTpe'laIOWHeClI B BbIpalKeHHH HeconplIlKeHHoM 3HepnIH ,I:\ecjJopMa­

IlHH JllIBa, Ha OCHOBe 06WHX coo6palOceMHK Hop06I.\lI, OTHOCHTeJlbHO cjJH3H'IeCKHX pa3MepoB H CbOKCTB

HHBapHaHTHOCTH, rrpHHHMalI BO BHHMaHHe HHBepCHIO HOpMaJlbHOM K Cpe,I:\HHHOii nOBepXHOCTH.


